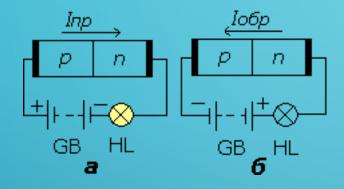
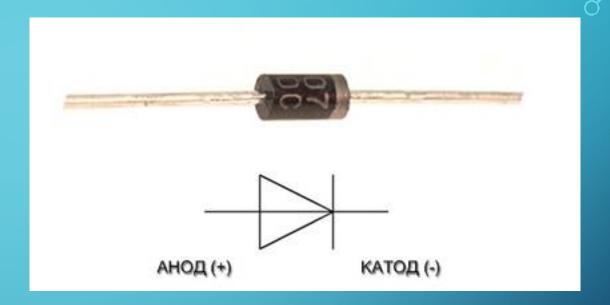
ЦИФРОВАЯ ЭЛЕКТРОНИКА 101

ТОЭ, ФИЗИКА, ТЕОРИЯ УПРАВЛЕНИЯ

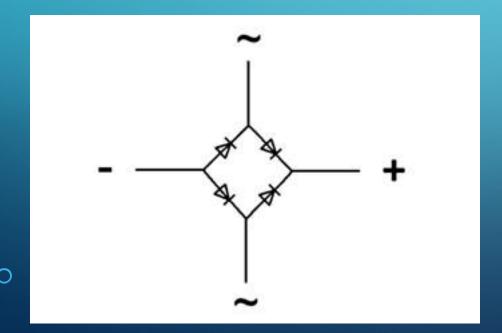

УРЖУМЦЕВ ОЛЕГ

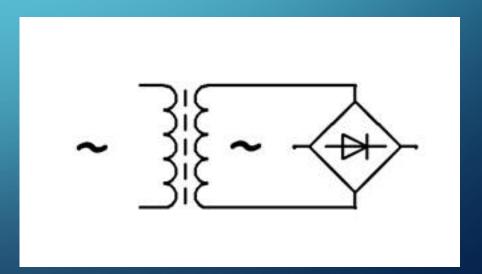

NETBUG@MIT.EDU

NB3.ME

ЗАНЯТИЕ 4. АКТИВНЫЕ ЭЛЕМЕНТЫ

(СВЕТО)ДИОД

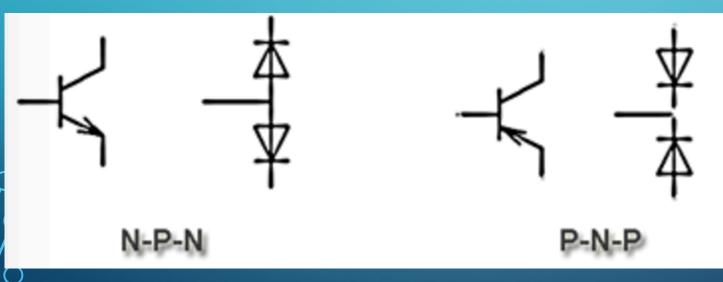


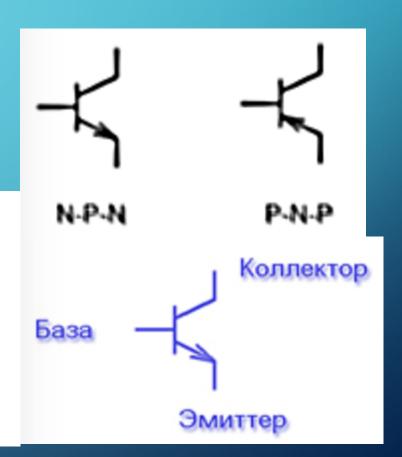


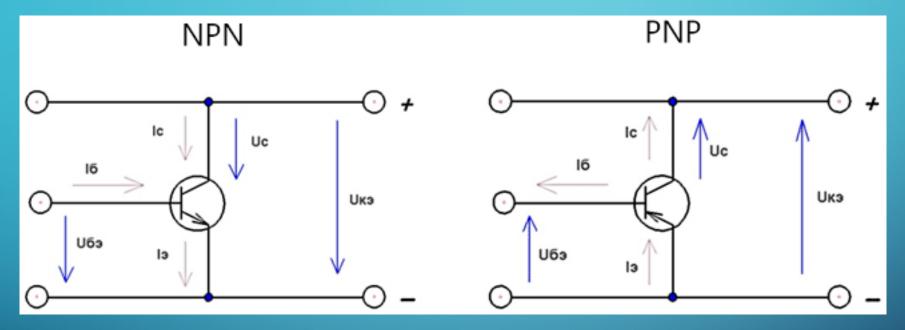
- Односторонняя проницаемость
- На элементе падает некоторое напряжение
- Сопротивление нелинейно зависит от тока
- => стабилизируем ток: диод не может быть активной нагрузкой!

ПРИМЕНЕНИЕ ДИОДОВ

- Основное применение для выпрямления
- Также может использоваться для суммирования сигналов и логического «ИЛИ»

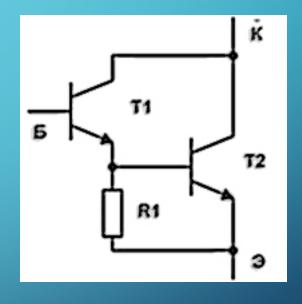

ТРАНЗИСТОР


• Основная структурная единица полупроводниковой техники


БИПОЛЯРНЫЙ ТРАНЗИСТОР

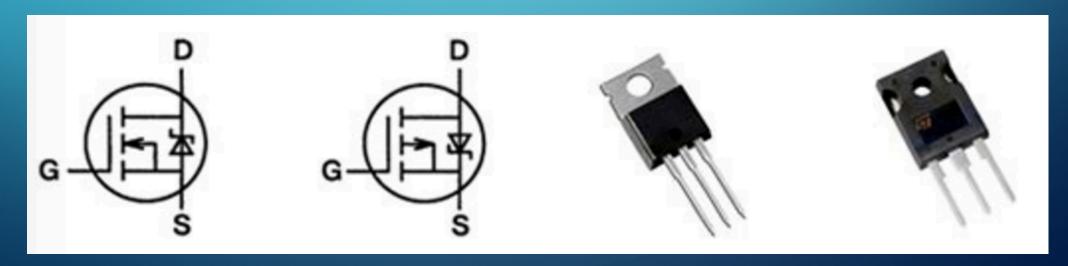
- Управляемый током вентиль
- Два диода

РАБОТА ТРАНЗИСТОРА


- Активный режим: коллекторный pn-переход закрыт, эмиттерный приоткрыт
- Насыщение: оба перехода открыты
- Отсечка: оба закрыты

ПАРАМЕТРЫ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

• Коэффициент передачи по току Входное сопротивление Рассеиваемая мощность. Постоянное/импульсное напряжение коллектор — эмиттер. Постоянное напряжение коллектор – база. Постоянное напряжение эмиттер – база. Предельная частота коэффициента передачи тока базы Постоянный/импульсный ток коллектора. Максимально допустимый ток Температура р-п перехода. Температура окружающей среды


КАСКАДИРОВАНИЕ ТРАНЗИСТОРОВ

- Повышает h21э
- Снижает быстродействие
- Существуют готовые составные транзисторы (транзисторы Дарлингтона)

MOSFET

- Управляемый напряжением вентиль
- Резистор переменного сопротивления + конденсатор на затворе
- Три вывода: G затвор, D сток, S исток

ПЛЮСЫ И МИНУСЫ MOSFET

• Плюсы у данных транзисторов следующие:

Минимальная мощность управления и большой коэффициент усиления по току

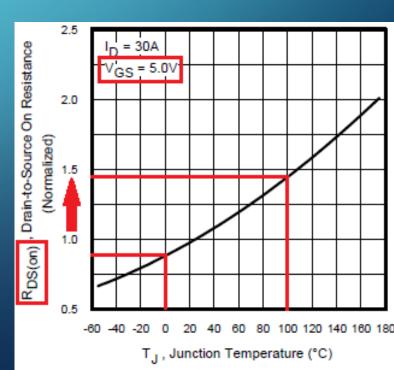
Большая скорость переключения при правильном управлении.

Устойчивость к большим импульсам напряжения.

Схемы, где применяются такие транзисторы, обычно проще.

• Минусы:

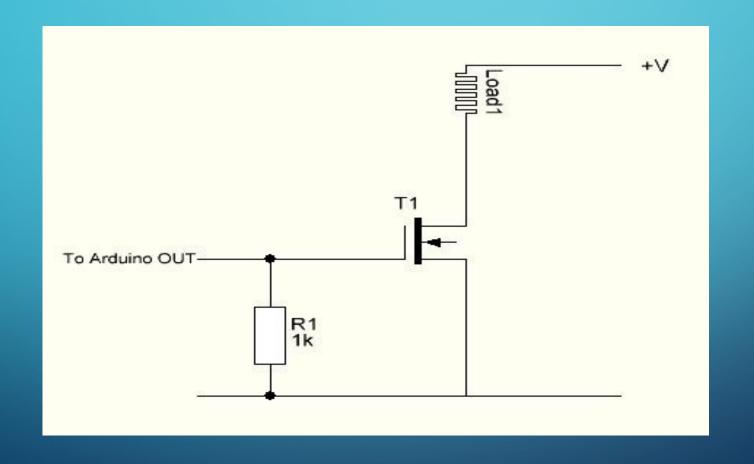
Стоят дороже, чем биполярные транзисторы.

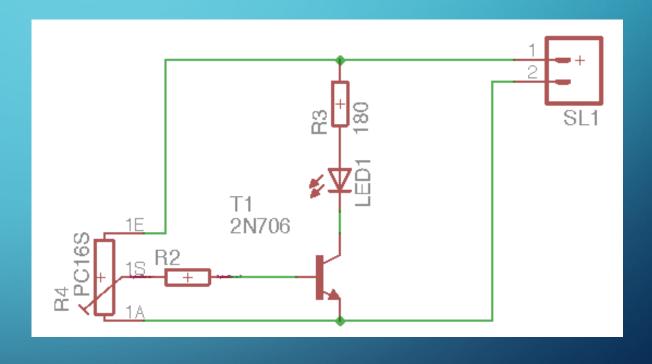

Боятся статического электричества.

ПРИМЕНЕНИЕ MOSFET

- В современных схемах с (-) на шасси чаще применяют N-канальные MOSFET
- Маломощные MOSFET открываются полностью напряжением ~3V
- Мощные порядка 10..12V
- -> необходима микросхема драйвера

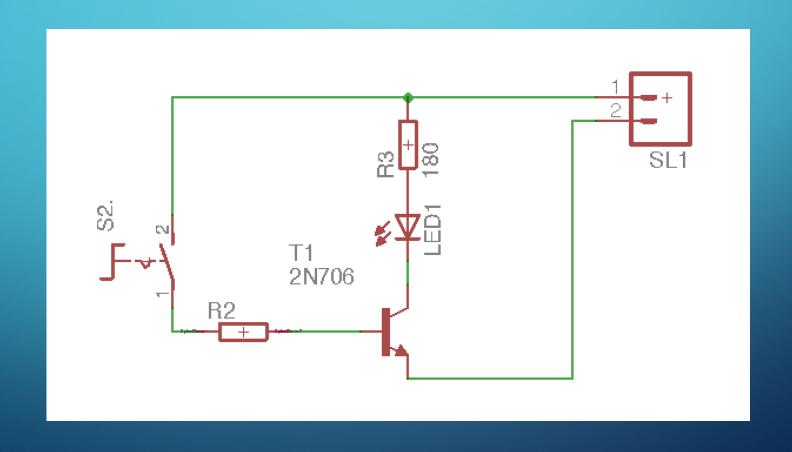
ПАРАМЕТРЫ MOSFET

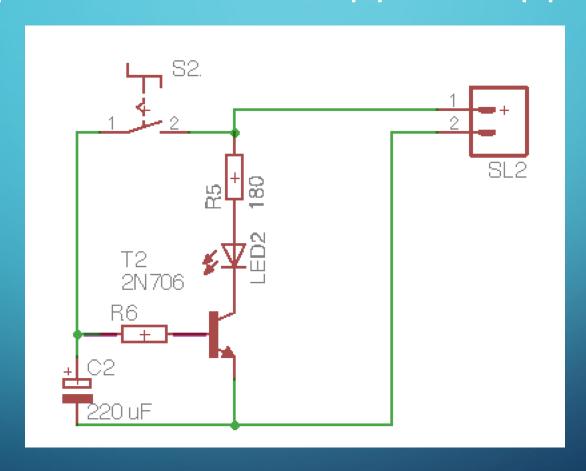

- V_{DSS} (Drain-to-Source Voltage) напряжение между стоком и истоком.
 - Необходимо помнить о 20% запасе!
- I_D (Continuous Drain Current) ток стока или непрерывный ток стока.
 - Указывается при постоянной величине напряжения затвор-исток (например, V_{GS} =10V). В даташите, как правило, указывается максимально возможный ток.
- **R**_{DS(on)} (Static Drain-to-Source On-Resistance) сопротивление сток-исток открытого канала.
 - При увеличении температуры кристалла транзистора сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов.


ПАРАМЕТРЫ MOSFET

- **P**_D (Power Dissipation) мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретный транзистор величина данного параметра указывается для определённой температуры кристалла.
- V_{GS} (Gate-to-Source Voltage) напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.
- $V_{GS(th)}$ (Gate Threshold Voltage) пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала транзистора и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше $V_{GS(th)}$, то транзистор будет закрыт.

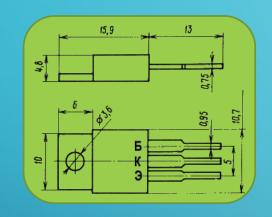
ПРИМЕНЕНИЕ MOSFET

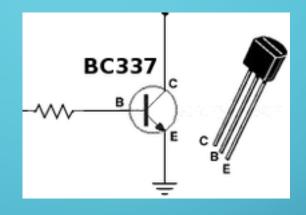

ПРИКЛАДНЫЕ СХЕМЫ: ТРАНЗИСТОР В ЛИНЕЙНОМ РЕЖИМЕ


ПРИКЛАДНЫЕ СХЕМЫ: ТРАНЗИСТОР В КЛЮЧЕВОМ РЕЖИМЕ

- Вспомните, что максимальная мощность рассеивается на последовательном резисторе, когда его сопротивление равно $R_{\text{нагр}}$
 - Если оно очень велико или мало, мощность весьма невелика.
- Выгодно использовать коммутирующий элемент в полностью закрытом либо в полностью закрытом состоянии

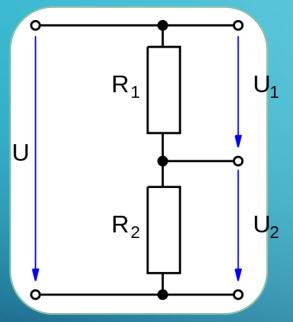
ПРИКЛАДНЫЕ СХЕМЫ: ТРАНЗИСТОР В КЛЮЧЕВОМ РЕЖИМЕ


ПРИКЛАДНЫЕ СХЕМЫ: МОДУЛЬ ЗАДЕРЖКИ

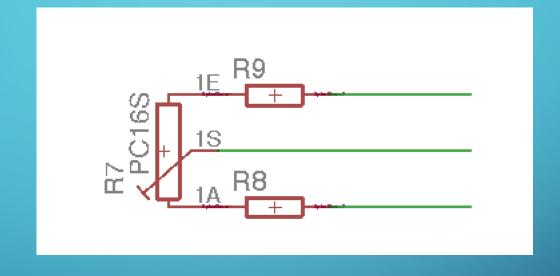

ПРАКТИКА

- Собрать схему с линией задержки
- Собрать схему с ключом, на котором будет рассеиваться 5 Вт. Поставить на него радиатор. Оценить потребную площадь для охлаждения (пассивное и с вентилятором)

ПОЛЕЗНАЯ ИНФОРМАЦИЯ



• Распиновка КТ805



Распиновка ВС337

ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ

$$\left\{egin{aligned} U_1 = IR_1 = Urac{R_1}{R_1 + R_2} \ U_2 = IR_2 = Urac{R_2}{R_1 + R_2} \end{aligned}
ight.$$

• Добавив в схему линейного регулятора (Рис. 3 в раздатке) резисторы (R9=47k, R8=470 R при сопротивлении R7=10K), мы добьёмся более плавной регулировки тока через нагрузку, сузив диапазон регулировки напряжения потенциометром.

ПОЛЕЗНЫЕ ССЫЛКИ

- Диоды: http://pomiluy.com/view_article.php?id=5
- Устройство транзисторов: http://hightolow.ru/transistor2.php
- Устройство транзисторов, детальнее: https://geektimes.ru/post/253730/
- Работа конденсаторов в RC-цепочках и цепях переменного тока: http://easyelectronics.ru/kondensator-i-rc-cepochka.html
- Операционные усилители: http://cxem.net/beginner/beginner96.php